Data Efficient Lithography Modeling With Transfer Learning and Active Data Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Learning Discourse Relations with Active Data Selection

The paper presents a new approach to identifying discourse relations, which makes use of a particular sampling method called committeebased sampling (CBS). In the committee-based sampling, multiple learning models are generated to measure the utility of an input example in classification; if it is judged as not useful, then the example will be ignored. The method has the effect of reducing the ...

متن کامل

Active Data Selection with Faults and Changepoints

We describe a Bayesian formalism for the intelligent selection of observations from sources that may intermittently undergo faults or changepoints. Such active data selection is performed with the goal of taking as few observations as necessary in order to maintain a reasonable level of uncertainty about the variables of interest. The presence of faults/changepoints is not always obvious and th...

متن کامل

Active Learning with Logged Data

We consider active learning with logged data, where labeled examples are drawn conditioned on a predetermined logging policy, and the goal is to learn a classifier on the entire population, not just conditioned on the logging policy. Prior work addresses this problem either when only logged data is available, or purely in a controlled random experimentation setting where the logged data is igno...

متن کامل

Submodularity in Data Subset Selection and Active Learning

We study the problem of selecting a subset of big data to train a classifier while incurring minimal performance loss. We show the connection of submodularity to the data likelihood functions for Naı̈ve Bayes (NB) and Nearest Neighbor (NN) classifiers, and formulate the data subset selection problems for these classifiers as constrained submodular maximization. Furthermore, we apply this framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

سال: 2019

ISSN: 0278-0070,1937-4151

DOI: 10.1109/tcad.2018.2864251